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Abstract

Kinetically stabilized 3-oxo-1,3-diphosphapropenes were prepared by oxidation of 1,3-diphosphapropenes with m-CPBA or from
reaction of the corresponding phosphaethenyllithium with phosphinic chloride. The 3-oxo-1,3-diphosphapropenes were used as
P,O-unsymmetrical bidentate ligands and the catalytic activity of the palladium(II) complexes in some cross-coupling reactions
was investigated.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Chemistry of low-coordinated phosphorus compounds
has greatly developed in recent years and we have repor-
ted a number of kinetically stabilized phosphaethenes
with a bulky Mes* (2,4,6-tri-t-butylphenyl) group [1,2].
Phosphaethenes with the P@C bond, which exhibits un-
ique properties such as p-electron accepting effect, are
novel and attractive ligands for synthetic catalysts [3].
Indeed, DPCB (=3,4-diphosphinidenecyclobutene) has
afforded several unique catalysts for organic reactions
[3]. We recently reported preparation and coordination
chemistry of kinetically stabilized 2-methyl-3,3-diphe-
nyl-1,3-diphosphapropene 1a [4,5] which was used as
ligands for transition-metal complexes. Compound 1a

contains both a low-coordinated sp2 phosphorus and a
normal sp3 phosphino phosphorus in the molecular
system. Basically, 1a predominantly forms an E-config-
uration to avoid steric congestion between the Mes*
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group and the PPh2 moiety, which enables the 1,3-di-
phosphapropene to act as a chelating ligand in the
complex formation. Indeed, 1a afforded chelate transi-
tion-metal complexes of tungsten(0), palladium(II) and
platinum(II) [4]. On the other hand, 2-chloro-3,3-di-
phenyl-1-(2,4,6-tri-t-butylphenyl)-1,3-diphosphapropene
[Mes*P@C(Cl)–PPh2: 1a-Cl] afforded neither palladium
nor platinum complex, though it afforded mono-coordi-
nated and chelate tungsten complexes [5], suggesting
that the substituent on the sp2 carbon in 1,3-diphospha-
propenes is important for complexation [6].

The 1,3-diphosphapropene systems can be transfor-
med chemically into other molecular structures. We
recently reported sulfurization of 1a to the correspond-
ing 3-thioxo-1,3-diphosphapropene 2a and utilization
of 2a as a ligand for transition-metal complexes [7].
3-Thioxo-1,3-diphosphapropene consists of the P@C–
P@S skeleton and behaves as a P,S-chelating ligand to
afford the corresponding five-membered transition-
metal complexes. The palladium(II) complexes contain-
ing the ligated 3-thioxo-1,3-diphosphapropene are stable
in air and moisture, and can be used for catalytic
reactions such as the Sonogashira and the Suzuki
cross-coupling reactions [7] (see Chart 1).
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The oxygen atom in phosphine oxides coordinates on
metals. Moreover, a number of biphosphine monoxides
have been developed and utilized as catalysts for organic
reactions [8]. Therefore, combination of phosphaethene
and phosphine oxide is expected to provide novel
ligands that are useful for exploring new catalysts. In this
paper, we report preparation of novel 1,3-diphospha-
propene and 3-oxo-1,3-diphosphapropene derivatives.
Coordination chemistry of P@C–P@O ligands as well
as catalytic activities has also been investigated.
2. Results and discussion

Compound 1a was prepared according to our pre-
vious report [4]. Compound 3, prepared from (Z)-
2-bromo-1-(2,4,6-tri-t-butylphenyl)-1-phosphapropene
and butyllithium [9], was allowed to react with phos-
phorus trichloride to give 2-methyl-3,3-dichloro-1,3-
diphosphapropene 4 [dP = 316, 168 (2JPP = 596 Hz)]
almost quantitatively. Air- and moisture-sensitive 4

was characterized only by 31P NMR spectroscopy and
E-configuration was identified from a large 2JPP value.
Steric congestion between the Mes* group and the PCl2
moiety is responsible for the formation of 4 of E-form.
Compound 4 was allowed to react with two equivalents
of organolithium reagent to give the corresponding
1,3-diphophapropene derivatives (1b–d) (Scheme 1). In-
deed, 4 is a promising reagent to prepare various 1,3-
diphosphapropenes. Molecular structure of 1c was
successfully analyzed by X-ray crystallography (30%
of molecules in the crystal were 3-oxo-1,3-diphospha-
propene 5c) [10]. The structure of 1c is similar to that
of 1a-Cl [6].

The 1,3-diphosphapropenes 1a–d were allowed to
react with an equimolar amount of m-chloroperbenzoic
acid (m-CPBA) to give the corresponding 3-oxo-1,3-
diphosphapropenes 5a–d in 70–75% yields (Scheme 2).
No oxidation on the sp2 phosphorus in 1 was observed
under the employed conditions. Alternatively, 2-chloro-
3-oxo-1,3-diphosphapropene 5a-Cl was prepared from
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the reaction of (Z)-1-chloro-2-(2,4,6-tri-t-butylphenyl)-
2-phosphaethenyllithium and Ph2P(O)Cl in 34% yield,
whereas attempts to obtain 5a-Cl from 1a-Cl by using
m-CPBA resulted in decomposition of the substrate. A
single crystal of 5c was employed for X-ray crystallogra-
phy and Fig. 1 shows an ORTEP drawing of the molec-
ular structure. Selected metric parameters are displayed
in Table 1. The P1–C1–P2–O1 skeleton takes an s-cis
form with the torsion angles of H = 12.3(2)�, which is
similar to a 3-thioxo-1,3-diphosphapropene [7]. The
P1–C1 distance indicates a P@C double bond [1], and
the P2–O distance is close to the corresponding data
of triphenylphosphine oxide (1.46 Å) [11].

3-Oxo-1,3-diphosphapropenes 5a–d afforded the
corresponding dichloropalladium(II) complexes 6a–d
in 75–85% yields [7]. Similarly, 5a-Cl was allowed to re-
act with PdCl2(CH3CN)2 to generate the corresponding
dichloropalladium(II) complex, but it gradually decom-
posed affording unidentified products [12]. The palla-
dium(II) complex 6a was recrystallized from a mixture
of CH2Cl2 and toluene to afford single crystals, one of
which was employed for X-ray crystallography. The
molecular structure of 6a and selected metric parameters
are displayed in Fig. 2 and Table 1, respectively. The
structure around the palladium atom in 6a revealed
a square-planar structure. The Pd–P1–C1–P2–O five-
membered chelate ring is almost planar [H(Pd–P1–C1–
P2) = 0.6(3)�, H(P1–C1–P2–O) = �13.0(4)�] , which is
similar to the structure of 7a [7b]. The Pd–Cl1 bond of
2.326(1) Å is longer than that of Pd–Cl2 [2.257(2) Å]
indicating the greater trans influence of the P@C moiety
Fig. 1. Molecular structure of 5c (40% probability ellipsoids). Hydro-
gen atoms are omitted for clarity.



Table 1
Selected bond lengths (Å) and angles (�) of 5c and 6a

Complex 5c Complex 6a

P1–C1 1.673(3) 1.671(6)
P1–CMes� 1.858(3) 1.812(5)
P2–O1 1.486(2) 1.513(4)
P2–C1 1.814(3) 1.794(5)
P2–Carom 1.814(3) 1.783(6)
P2–Carom 1.798(3) 1.784(6)
C1–C2 1.507(4) 1.501(8)
Pd–Cl1 2.326(1)
Pd–Cl2 2.257(2)
Pd–P1 2.208(1)
Pd–O 2.075(4)

C1–P1–CMes� 99.8(1) 113.0(3)
P1–C1–P2 115.2(2) 109.4(3)
P1–C1–C2 127.5(2) 128.6(4)
P2–C1–C2 116.9(2) 122.0(4)
O–P2–C1 112.4(1) 109.7(2)
O–P2–Carom 112.5(1) 110.4(3)
O–P2–Carom 113.6(1) 110.5(2)
Carom–P2–Carom 107.2(1) 112.9(3)
Cl1–Pd–Cl2 93.90(6)
Cl1–Pd–P1 174.98(8)
Cl1–Pd–O 91.0(1)
Cl2–Pd–P1 90.62(5)
Cl2–Pd–O 174.6(1)
P1–Pd–O 84.6(1)
Pd–P1–C1 112.3(2)
Pd–P1–CMes� 134.7(2)
Pd–O–P2 120.3(2)

Fig. 2. Molecular structure of 6a with 30% probability ellipsoids.
Hydrogen atoms and the solvent molecules (dichloromethane) are
omitted for clarity.
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Table 2
Sonogashira reaction (Scheme 3(a))

Catalyst Yield (%)

6a 35
6b 60
6c 68
6d 39

Table 3
Suzuki reaction (Scheme 3(b))

Catalyst Yield (%)

6a 71
6b 60
6c 57
6d 64
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than that of the P@O moiety. The P1–C1 distance of 6a
is longer than that in 7a [1.644(9) Å] [7b]. The P2–O dis-
tance of 6a is comparable to that for 8 [1.509(11) Å]
[13a] or for [Ph2PCH2P(@O)Ph2][Pd(Me)Cl] [1.508(4)
Å] [13b]. The P1–Pd and Pd–O distances of 6a are com-
parable to the corresponding distances of 7a [2.186(3) Å]
and 8 [2.088(12) Å] [13a], respectively (see Chart 2).

To estimate the catalytic activity of 6, we employed
the Sonogashira coupling reaction [14]. Iodobenzene
(2.0 mmol) in triethylamine (8 mL) reacted with phenyl-
acetylene (2.0 mmol) at room temperature in the pre-
sence of 6 (0.050 mmol) and copper(I) iodide (0.050
mmol) for 4 h at room temperature to afford the corre-
sponding diphenylacetylene. Table 2 summarizes the
results of the Sonogashira reactions (Scheme 3(a)). The
catalytic activity of 6 is inferior to that of 7a [7b], sug-
gesting a considerable p-accepting effect of P@C moiety
as well as a smaller electron-donating effect of the P@O
moiety. In Table 2, 6c gave the best result, indicating
that the p-anisyl groups might facilitate the oxidative
addition relatively with other complexes. On the other
hand, the catalytic activity of 6 in the Suzuki reaction
[15] in Scheme 3(b) [conditions: iodobenzene (2.0
mmol), phenylboric acid (2.0 mmol), 6 (0.080 mmol),
potassium carbonate (4.0 mmol), THF (15 mL), reflux
20 h] is moderate (Table 3) and similar to the catalytic
activity of 9 [16]. We are studying to establish other
catalytic reaction systems which are suitable to 3-oxo-
1,3-diphosphapropenes (see Chart 3).
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3. Conclusion

We have demonstrated the preparation of 3-oxo-1,3-
diphosphapropenes 5a–d which have been used as the
P@C–P@O chelate ligands of palladium(II) complexes
6a–d. The molecular structure of 6a was confirmed by
the X-ray crystallography. The catalytic activities of 6

in some cross-coupling reactions were investigated as a
property of 3-oxo-1,3-diphosphapropene ligands.
Although 6 did not show efficient catalytic activity in
the Sonogashira or Suzuki coupling reactions, the preli-
minary results prompt us to survey unique activity of the
P@C–P@O ligands.
4. Experimental

4.1. Preparation of 4

To a solution of (Z)-2-bromo-1-(2,4,6-tri-t-butylphe-
nyl)-1-phosphapropene (0.50 g, 1.30 mmol) in THF (20
mL) was added butyllithium (1.30 mmol) at �78 �C. To
the reaction mixture containing 3 was added phospho-
rus trichloride (ca. 2.5 mmol) in Et2O (10 mL) at �78
�C. After being warmed to room temperature, the vola-
tile materials were removed in vacuo and the residue was
extracted with hexane. Removal of the solvent afforded
4: 0.52 g (1.30 mmol, >99% yield).

4.2. Preparation of 1b

To a THF solution of p-bromotoluene (2.60 mmol)
was added t-butyllithium at �78 �C, and stirred for
0.5 h. The reaction mixture was added to a solution of
4 (ca. 1.30 mmol) in THF at �78 �C. The reaction
mixture was allowed to warm to room temperature
and stirred for 2 h. The solvent was removed in vacuo
and the residual materials were purified by silica-gel col-
umn chromatography (hexane/AcOEt = 19:1) to afford
1b: 294 mg (0.57 mmol) (44% yield). Colorless amor-
phous solid; 31P{1H} NMR (162 MHz, CDCl3) d =
289.0 (d, 2JPP = 243 Hz), 8.5 (d, 2JPP = 243 Hz); 1H
NMR (400 MHz, CDCl3) d = 7.53–7.49 (m, 6H, arom),
7.27–7.25 (m, 4H, arom), 2.45 (s, 6H, p-CH3), 1.59 (s,
18H, o-tBu), 1.37 (s, 9H, p-tBu), 1.48–1.43 (m, 3H,
CH3);

13C{1H} NMR (101 MHz, CDCl3) d = 181.3
(dd, 1JPC = 59 Hz, 1JPC = 30 Hz, P@C), 153.6 (s, o-C
of Mes*), 150.1 (s, p-C of Mes*), 139.4 (dd, 1JPC = 68
Hz, 3JPC = 24 Hz, ipso-C of Mes*), 138.9 (s, p-Tol),
134.2 (d, 2JPC = 19 Hz, o-Tol), 133.7 (dd, 1JPC = 16
Hz, 3JPC = 4 Hz, ipso-Tol), 129.5 (d, 3JPC = 7 Hz,
m-Tol), 122.0 (s, m-C of Mes*), 38.3 (s, o-CMe3), 35.3
(s, p-CMe3), 33.2 (d, 4JPC = 7 Hz, o-CMe3), 31.8 (s, p-
CMe3), 22.5 (dd, 2JPC = 15 Hz, 2JPC = 11 Hz, P@CMe),
21.8 (s, p-C6H4CH3).

4.3. Preparation of 1c

To a THF solution of p-bromoanisole (2.60 mmol)
was added t-butyllithium at �78 �C, and stirred for
0.5 h. The reaction mixture was added to a solution of
4 (ca. 1.30 mmol) in THF at �78 �C. The reaction mix-
ture was allowed to warm to room temperature and stir-
red for 2 h. The solvent was removed in vacuo and the
residual materials were purified by silica-gel column
chromatography (hexane/AcOEt = 19:1) to afford 1c:
356 mg (0.65 mmol) (50% yield). Colorless amorphous
solid; 31P{1H} NMR (162 MHz, CDCl3) d = 284.8 (d,
2JPP = 214 Hz), 7.8 (d, 2JPP = 214 Hz); 1H NMR (400
MHz, CDCl3) d = 7.51–7.47 (m, 4H, arom), 7.43 (s,
2H, arom), 6.96–6.94 (m, 4H, arom), 3.85 (s, 6H,
OCH3), 1.51 (s, 18H, o-tBu), 1.42 (dd, 3JPH = 14 Hz,
3JPH = 10 Hz, 3H, CH3), 1.37 (s, 9H, p-tBu); 13C{1H}
NMR (101 MHz, CDCl3) d = 182.3 (dd, 1JPC = 61 Hz,
1JPC = 29 Hz, P@C), 162.6 (d, 4JPC = 2 Hz, p-Anis),
153.6 (s, o-C of Mes*), 150.1 (s, p-C of Mes*), 139.6
(dd, 1JPC = 68 Hz, 3JPC = 20 Hz, ipso-C of Mes*),
135.8 (d, 2JPC = 20 Hz, o-Anis), 128.1 (dd, 1JPC = 16
Hz, 3JPC = 10 Hz, ipso-Anis), 122.0 (s, m-C of Mes*),
114.4 (d, 3JPC = 8 Hz, o-Anis), 55.6 (s, p-C6H4OCH3),
38.4 (s, o-CMe3), 35.3 (s, p-CMe3), 33.1 (d, 4JPC = 7
Hz, o-CMe3), 32.0 (s, p-CMe3), 22.8 (dd, 2JPC = 32
Hz, 2JPC = 17 Hz, P@CMe).

4.4. Preparation of 1d

To an Et2O solution of butyllithium (2.60 mmol) was
added a solution of 4 (ca. 1.30 mmol) in THF at �78 �C.
The reaction mixture was allowed to warm to room tem-
perature and stirred for 2 h. The solvent was removed in
vacuo and the residue was purified by silica-gel column
chromatography (hexane/AcOEt = 19:1) to afford 1d:
264 mg (0.59 mmol) (45% yield). Pale yellow oil;
31P{1H} NMR (162 MHz, CDCl3) d = 277.0 (d,
2JPP = 214 Hz), �5.4 (d, 2JPP = 214 Hz); 1H NMR
(400 MHz, CDCl3) d = 7.47 (s, 2H, arom), 7.43 (s, 2H,
arom), 1.55 (s, 18H, o-tBu), 1.35 (s, 9H, p-tBu), 1.75–
1.30 (m, 21H, nBu, Me); 13C{1H} NMR (101 MHz,
CDCl3) d = 183.4 (dd, 1JPC = 60 Hz, 1JPC = 32 Hz,
P@C), 153.7 (s, o-C of Mes*), 150.0 (s, p-C of Mes*),
139.1 (dd, 1JPC = 68 Hz, 3JPC = 20 Hz, ipso-C of
Mes*), 122.2 (s, m-C of Mes*), 38.3 (s, o-CMe3), 35.3
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(s, p-CMe3), 33.0 (d, 4JPC = 7 Hz, o-CMe3), 31.8 (s, p-
CMe3), 28.9 (d, 2JPC = 14 Hz, CH2), 26.4 (dd,
1JPC = 18 Hz, 3JPC = 14 Hz, CH2), 24.8 (d, 3JPC = 12
Hz, CH2), 21.5 (dd, 2JPC = 15 Hz, 2JPC = 10 Hz,
P@CMe), 14.1 (s, CH3).

4.5. Oxidation of 1 with m-CPBA

A solution of 1a (0.550 g, 1.13 mmol) and m-CPBA
(1.13 mmol) in CH2Cl2 (20 mL) was stirred at room tem-
perature for 2 h. The solvent was removed in vacuo and
the residual solid was purified by silica-gel column chro-
matography (hexane/AcOEt = 1:1) to afford 5a; 0.43 g
(0.85 mmol) (75% yield). Compound 5a: Colorless crys-
tals, mp 168–169 �C; 31P{1H} NMR (162 MHz, CDCl3)
d = 320.9 (d, 2JPP = 115 Hz), 33.0 (d, 2JPP = 115 Hz);
1H NMR (400 MHz, CDCl3) d = 7.86–7.81 (m, 4H,
arom), 7.48–7.43 (m, 6H, arom), 7.40 (s, 2H, Mes*),
1.50–1.47 (m, 3H, CH3), 1.47 (s, 18H, o-tBu), 1.29 (s,
9H, p-tBu); 13C{1H} NMR (101 MHz, CDCl3)
d = 172.1 (dd, 1JPC = 76 Hz, 1JPC = 64 Hz, P@C),
153.8 (s, o-C of Mes*), 151.0 (s, p-C of Mes*), 136.3
(dd, 1JPC = 66 Hz, 3JPC = 18 Hz, ipso-C of Mes*),
132.5 (dd, 1JPC = 102 Hz, 3JPC = 4 Hz, ipso-Ph), 132.5
(d, 3JPC = 9 Hz, m-Ph), 132.2 (d, 4JPC = 2 Hz, p-Ph),
128.7 (d, 2JPC = 12 Hz, o-Ph), 122.5 (s, m-C of Mes*),
38.2 (s, o-CMe3), 35.3 (s, p-CMe3), 33.2 (d, 4JPC = 7
Hz o-CMe3), 31.7 (s, p-CMe3), 22.9 (dd, 2JPC = 14 Hz,
2JPC = 6 Hz, P@CMe); IR (KBr) m = 1178 (P@O)
cm�1; HR-ESI-MS found: m/z 527.2603; calcd for
C32H42OP2 Æ Na (M+ + Na): 527.2603. Compounds
5b-d were prepared in a similar manner. Compound 5b

(70% yield): Colorless solid, mp 164–165 �C; 31P{1H}
NMR (162 MHz, CDCl3) d = 318.2 (d, 2JPP = 116
Hz), 33.2 (d, 2JPP = 116 Hz); 1H NMR (400 MHz,
CDCl3) d = 7.74–7.69 (m, 4H, arom), 7.40 (s, 2H,
arom), 7.25–7.23 (m, 4H, arom), 2.34 (s, 6H, p-CH3),
1.49–1.43 (m, 3H, CH3), 1.43 (s, 18H, o-tBu), 1.29 (s,
9H, p-tBu); 13C{1H} NMR (101 MHz, CDCl3)
d = 172.9 (dd, 1JPC = 76 Hz, 1JPC = 64 Hz, P@C),
153.8 (s, o-C of Mes*), 150.9 (s, p-C of Mes*), 142.3
(d, 4JPC = 3 Hz, p-Tol), 136.6 (dd, 1JPC = 67 Hz,
3JPC = 18 Hz, ipso-C of Mes*), 132.6 (d, 3JPC = 10 Hz,
m-Tol), 129.4 (dd, 1JPC = 105 Hz, 3JPC = 3 Hz, ipso-
Tol), 129.4 (d, 2JPC = 12 Hz, o-Tol), 122.4 (s, m-C of
Mes*), 38.2 (s, o-CMe3), 35.3 (s, p-CMe3), 33.1 (d,
4JPC = 7 Hz o-CMe3), 31.7 (s, p-CMe3), 22.0 (s, p-
C6H4CH3), 20.9 (dd, 2JPC = 14 Hz, 2JPC = 5 Hz,
P@CMe); IR (KBr) m = 1184 (P@O) cm�1. Compound
5c (75% yield): Colorless solid, mp 140–142 �C;
31P{1H} NMR (162 MHz, CDCl3) d = 316.8 (d,
2JPP = 116 Hz), 32.6 (d, 2JPP = 116 Hz); 1H NMR
(400 MHz, CDCl3) d = 7.70–7.66 (m, 4H, arom), 7.33
(s, 2H, arom), 6.90–6.88 (m, 4H, arom), 3.70 (s, 6H, p-
OCH3), 1.42–1.31 (m, 3H, CH3), 1.37 (s, 18H, o-tBu),
1.23 (s, 9H, p-tBu); 13C{1H} NMR (101 MHz, CDCl3)
d = 173.6 (dd, 1JPC = 77 Hz, 1JPC = 63 Hz, P@C),
162.6 (d, 4JPC = 2 Hz, p-Anis), 153.6 (s, o-C of Mes*),
150.7 (s, p-C of Mes*), 136.6 (dd, 1JPC = 67 Hz,
3JPC = 18 Hz, ipso-C of Mes*), 134.2 (d, 3JPC = 11 Hz,
m-Anis), 123.9 (d, 1JPC = 110 Hz, ipso-Anis), 122.3 (s,
m-C of Mes*), 114.1 (d, 2JPC = 13 Hz, o-Anis), 55.6 (s,
p-C6H4OCH3), 38.2 (s, o-CMe3), 35.3 (s, p-CMe3), 33.1
(d, 4JPC = 5 Hz, o-CMe3), 31.7 (s, p-CMe3), 20.8 (dd,
2JPC = 14 Hz, 2JPC = 5 Hz, P@CMe); IR (KBr)
m = 1176 (P@O) cm�1. Compound 5d (70% yield): Col-
orless crystals, mp 120–121 �C; 31P{1H} NMR (162
MHz, CDCl3) d = 309.8 (d, 2JPP = 92 Hz), 47.0 (d,
2JPP = 92 Hz); 1H NMR (400 MHz, CDCl3) d = 7.33
(s, 2H, arom), 1.37 (s, 18H, o-tBu), 1.83–1.30 (m, 21H,
nBu, Me), 1.23 (s, 9H, p-tBu); 13C{1H} NMR (101
MHz, CDCl3) d = 172.1 (pt, (1JPC + 1JPC)/2 = 64 Hz,
P@C), 153.7 (s, o-C of Mes*), 150.9 (s, p-C of Mes*),
135.8 (dd, 1JPC = 66 Hz, 3JPC = 15 Hz, ipso-C of
Mes*), 122.3 (s, m-C of Mes*), 38.2 (s, o-CMe3), 35.3
(s, p-CMe3), 33.0 (d, 4JPC = 11 Hz, o-CMe3), 31.6 (s,
p-CMe3), 29.3 (dd, 1JPC = 67 Hz, 3JPC = 7 Hz, CH2),
24.6 (d, 2JPC = 15 Hz, CH2), 24.2 (d, 3JPC = 3 Hz,
CH2), 20.6 (dd, 2JPC = 15 Hz, 2JPC = 5 Hz, P@CMe),
14.0 (s, CH3); IR (KBr) m = 1170 (P@O) cm�1.

4.6. Preparation of 5a-Cl

To a solution of 2,2-dichloro-1-(2,4,6-tri-t-butylphe-
nyl)-1-phosphaethene (0.500 g, 1.43 mmol) in THF (20
mL) was added butyllithium (1.58 mmol) at �100 �C.
After being stirred for 10 min, diphenylphosphinic chlo-
ride (1.60 mmol) was added to the reaction mixture. The
reaction mixture was stirred for 1 h at �100 �C and was
allowed to warm to room temperature. The solvent was
removed in vacuo and silica-gel column chromatogra-
phy (hexane/AcOEt 2:1) gave 5a-Cl (0.257 g, 34% yield).
Colorless crystals, mp 163–164 �C; 31P{1H} NMR (162
MHz, CDCl3) d = 319.7 (d, 2JPP = 80 Hz), 30.0 (d,
2JPP = 80 Hz); 1H NMR (400 MHz, CDCl3) d = 7.87–
7.84 (m, 4H, arom), 7.55–7.53 (m, 2H, arom), 7.48–
7.46 (m, 4H, arom), 7.42 (s, 2H, arom), 1.43 (s, 18H,
o-tBu), 1.32 (s, 9H, p-tBu); 13C{1H} NMR (101 MHz,
CDCl3) d = 158.7 (pt, (1JPC + 1JPC)/2 = 83 Hz, P@C),
153.9 (s, o-C of Mes*), 151.7 (s, p-C of Mes*), 133.5
(dd, 1JPC = 61 Hz, 3JPC = 11 Hz, ipso-C of Mes*),
132.7 (s, o-Ph), 132.64 (s, p-Ph), 132.61 (s, m-Ph),
131.1 (dd, 1JPC = 107 Hz, 3JPC = 2 Hz, ipso-Ph), 122.8
(s, m-C of Mes*), 38.2 (s, o-CMe3), 35.4 (s, p-CMe3),
33.3 (d, 4JPC = 7 Hz o-CMe3), 31.7 (s, p-CMe3); IR
(KBr) m = 1190 cm�1 (P@O).

4.7. Preparation of 6

A solution of 5a (200 mg, 0.397 mmol) and
PdCl2(CH3CN)2 (0.397 mmol) in dichloromethane (30
mL) was stirred at room temperature for 0.5 h. Hexane
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(10 mL) was added to the reaction mixture and the pre-
cipitates were collected by filtration. Purification by sil-
ica-gel column chromatography (hexane/AcOEt = 1:2)
afforded 6a: 230 mg (0.337 mmol) (85%). Yellowish-
brown solid (CH2Cl2/toluene), mp 144–145 �C;
31P{1H} NMR (162 MHz, CDCl3) d = 255.1 (d,
2JPP = 62 Hz), 65.0 (d, 2JPP = 62 Hz); 1H NMR (400
MHz, CDCl3) d = 7.79–7.75 (m, 6H, arom), 7.62–7.60
(m, 4H, arom), 7.55–7.54 (m, 2H, arom), 1.70 (s, 18H,
o-tBu), 1.32 (s, 9H, p-tBu), 1.37–1.30 (m, 3H, CH3);
13C{1H} NMR (101 MHz, CDCl3) d = 156.6 (d,
2JPC = 3 Hz, o-C of Mes*), 156.1 (s, p-C of Mes*),
153.7 (dd, 1JPC = 78 Hz, 1JPC = 28 Hz, P@C), 134.8
(d, 3JPC = 2 Hz, m-C of Mes*), 132.4 (d, 3JPC = 11
Hz, m-Ph), 130.0 (d, 2JPC = 13 Hz, o-Ph), 125.9 (d,
1JPC = 8 Hz, ipso-Ph), 124.9 (d, 4JPC = 9 Hz, p-Ph),
116.7 (d, 1JPC = 10 Hz, ipso-C of Mes*), 39.6 (s, o-
CMe3), 35.8 (s, p-CMe3), 34.7 (s, o-CMe3), 31.3 (s, p-
CMe3), 19.7 (dd, 2JPC = 15 Hz, 2JPC = 6 Hz, P@CMe).
IR (KBr) m = 1120 (P@O) cm�1; HR-ESI-MS found:
m/z 645.1431; calcd for C32H42ClOP2Pd (M+–Cl):
645.1429. Complexes 6b-d were prepared in a similar
manner. Complex 6b (84% yield): Yellowish-brown so-
lid, mp 163–164 �C; 31P{1H} NMR (162 MHz, CDCl3)
d = 250.7 (d, 2JPP = 62 Hz), 65.4 (d, 2JPP = 62 Hz);1H
NMR (400 MHz, CDCl3) d = 7.55–7.50 (m, 4H, arom),
7.42 (s, 2H, Mes*), 7.29 (brs, 4H, arom), 2.31 (s, 6H, p-
CH3), 1.52 (s, 18H, o-tBu), 1.31 (dd, 3JPH = 29 Hz,
3JPH = 15 Hz, 3H, CH3), 1.19 (s, 9H, p-tBu); 13C{1H}
NMR (101 MHz, CDCl3) d = 156.5 (s, o-C of Mes*),
155.9 (s, p-C of Mes*), 155.4 (dd, 1JPC = 77 Hz,
1JPC = 29 Hz, P@C), 145.7 (s, m-C of Mes*), 132.3 (d,
3JPC = 11 Hz, m-Tol), 130.3 (d, 2JPC = 13 Hz, o-Tol),
124.8 (d, 4JPC = 9 Hz, p-Tol), 122.0 (dd, 1JPC = 110
Hz, 3JPC = 7 Hz, ipso-Tol), 116.7 (d, 1JPC = 8 Hz,
ipso-C of Mes*), 39.5 (s, o-CMe3), 35.7 (s, p-CMe3),
34.6 (s, o-CMe3), 31.3 (s, p-CMe3), 22.3 (s, p-
C6H4CH3), 19.9 (dd, 2JPC = 15 Hz, 2JPC = 6 Hz,
P@CMe); IR (KBr) m = 1119 (P@O) cm�1. Complex
6c (82% yield): Yellowish-brown solid, mp 175–177 �C;
31P{1H} NMR (162 MHz, CDCl3) d = 249.0 (d,
2JPP = 64 Hz), 64.8 (d, 2JPP = 64 Hz); 1H NMR (400
MHz, CDCl3) d = 7.64–7.59 (m, 4H, arom), 7.47 (d,
3JPH = 4 Hz, 2H, Mes*), 7.04–7.01 (m, 4H, arom),
3.83 (s, 6H, p-OCH3), 1.59 (s, 18H, o-tBu), 1.38 (dd,
3JPH = 30 Hz, 3JPH = 14 Hz, 3H, CH3), 1.25 (s, 9H, p-
tBu); 13C{1H} NMR (101 MHz, CDCl3) d = 164.6 (d,
4JPC = 3 Hz, p-Anis), 156.6 (d, 3JPC = 3 Hz, m-C of
Mes*), 155.9 (s, p-C of Mes*), 155.5 (dd, 1JPC = 76
Hz, 1JPC = 3 Hz, P@C), 134.5 (d, 3JPC = 12 Hz, m-
Anis), 124.8 (d, 2JPC = 9 Hz, o-C of Mes*), 116.8 (d,
1JPC = 3 Hz, ipso-C of Mes*), 116.7 (d, 1JPC = 8 Hz,
ipso-Anis), 115.6 (d, 2JPC = 14 Hz, o-Anis), 55.2 (s, p-
C6H4OCH3), 39.5 (s, o-CMe3), 35.7 (s, p-CMe3), 34.6
(s, o-CMe3), 31.3 (s, p-CMe3), 19.9 (dd, 2JPC = 15 Hz,
2JPC = 6 Hz, P@CMe); IR (KBr) m = 1119 (P@O)
cm�1. Complex 6d (75% yield): Yellowish-brown amor-
phous solid; 31P{1H} NMR (162 MHz, CDCl3)
d = 249.0 (d, 2JPP = 50 Hz), 90.0 (d, 2JPP = 50 Hz); 1H
NMR (400 MHz, CDCl3) d = 7.49 (d, 2H, 3JPH = 3
Hz, arom), 1.63 (s, 18H, o-tBu), 1.45 (dd, 3JPH = 30
Hz, 3JPH = 15 Hz, 3H, CH3), 2.05–1.40 (m, 18H, nBu),
1.20 (s, 9H, p-tBu); 13C{1H} NMR (101 MHz, CDCl3)
d = 157.1 (dd, 1JPC = 64 Hz, 1JPC = 29 Hz, P@C),
156.5 (d, 3JPC = 3 Hz, o-C of Mes*), 155.9 (s, p-C of
Mes*), 124.8 (d, 2JPC = 9 Hz, m-C of Mes*), 116.9
(brd, 1JPC = 7 Hz, ipso-C of Mes*), 39.5 (s, o-CMe3),
35.7 (s, p-CMe3), 34.8 (s, o-CMe3), 31.3 (s, p-CMe3),
27.9 (dd, 1JPC = 65 Hz, 3JPC = 6 Hz, CH2), 24.2 (d,
2JPC = 15 Hz, CH2), 23.6 (d, 3JPC = 5 Hz, CH2), 19.6
(dd, 2JPC = 16 Hz, 2JPC = 7 Hz, P@CMe), 14.1 (s,
CH3); IR (KBr) m = 1122 (P@O) cm�1.

4.8. X-ray crystallography for 5c

C34H46O3P2, M = 564.68, crystal dimensions: 0.20 ·
0.20 · 0.10 mm3, monoclinic, space group P21/c (No.
14), a = 16.3881(6) Å, b = 10.2144(3) Å, c = 19.9335(6)
Å, b = 108.0622(7)�, V = 3172.3(2) Å3, Z = 4, T = 133
K, 2hmax = 55.0�, q = 1.182 g cm�1, l(Mo Ka) = 0.168
mm�1, F000 = 1216, 25165 measured reflections, 7108
unique reflections (Rint = 0.044), R1 = 0.057 (I > 2.0r(I)),
Rw = 0.132 (all data) (CCDC-269267).

4.9. X-ray crystallography for 6a

C32H42Cl2OP2Pd Æ CH2Cl2,M = 766.87, crystal dimen-
sions: 0.25 · 0.20 · 0.20 mm3, monoclinic, space group
P21 (No. 4), a = 8.8009(3) Å, b = 16.1300(6) Å, c =
13.2923(5) Å, b = 103.307(2)�, V = 1936.3(3) Å3, Z =
2, T = 223 K, 2hmax = 55.0�, q = 1.387 g cm�1, l(Mo
Ka) = 0.907 mm�1, F000 = 788, 14672 measured reflec-
tions, 4303 unique reflections (Rint = 0.040), R1 = 0.042
(I > 2.0r(I)), Rw = 0.052 (all data) (CCDC-249371).

4.10. Sonogashira coupling reaction

A solution of iodobenzene (2.0 mmol), phenylacety-
lene (2.0 mmol), catalyst (6, 0.050 mmol), and copper(I)
iodide (0.050 mmol) in triethylamine (8 mL) was stirred
for 4 h at room temperature. The volatile materials were
removed in vacuo and the residue was extracted with
hexane. Silica-gel column chromatography (hexane) of
the hexane extracts afforded diphenylacetylene.

4.11. Suzuki coupling reaction

A solution of iodobenzene (2.0 mmol), phenylboric
acid (2.0 mmol), catalyst (6, 0.080 mmol), and potas-
sium carbonate (4.0 mmol) in THF (15 mL) was refluxed
for 20 h. After being cooled to room temperature, the
reaction mixture was concentrated in vacuo. The residue
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was extracted with hexane and purified by silica-gel col-
umn chromatography (hexane) to afford biphenyl.
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